The distribution of a [[Random Variable]] $Y$ is a member of the exponential family, when its [[Probability Density Function|PDF]] $f_\theta(y)$ can be expressed in the following form.
$
\begin{align}
f_\theta (y) &= h(y) \exp \Big( T(y)\eta (\theta)- B(\theta) \Big) && (\mathrm{if}\,\theta \in \mathbb R)\\[6pt]
f_\theta (y) &= h(y) \exp \left [\sum_{i=1}^k ( T_i(y)\eta_i (\theta)- B(\theta) \right] && (\mathrm{if}\, \theta \in \mathbb R^k)
\end{align}
$
The components of this representation are:
- $h(y)$: A scaling function that only depends on the data $y$.
- $\exp(\cdot)$: An exponential function that is govern by two elements.
- $T(y)\eta(\theta)$: An interaction of a function depending on the data $T(y)$ with a function depending on the distribution parameter $\eta(\theta)$.
- $B(\theta)$: A function depending on the distribution parameter $\theta$.
**Bernoulli:**
$
\begin{align}
f_p(y) &= p^y*(1-p)^{1-y}\\[6pt]
&=\exp \Big\{y \ln(p)+(1-y) \ln(1-p)\Big\} \\[6pt]
&=\exp \Big\{y \ln(p)+\ln(1-p)-y\ln(1-p)\Big \} \\[6pt]
&=\exp \Big\{y*\ln(\frac{p}{1-p})+\ln(1-p)\Big \} \\[6pt]
&=\exp \Big\{\underbrace{y}_{ T(y)}*\underbrace{\ln(\frac{p}{1-p})}_{\eta(p)}-\underbrace{(-\ln(1-p))}_{B(p)}\Big \}*\underbrace 1_{h(y)} \\[6pt]
\end{align}
$
**Poisson:**
$
\begin{align}
f_\lambda(y)&=\frac{\lambda^y}{y!}*e^{-\lambda} \\[6pt]
&=\underbrace{\frac{1}{y!}}_{h(y)}*\exp\Big\{\underbrace{y}_{T(y)}* \underbrace{\ln(\lambda)}_{\eta(\lambda)}- \underbrace{\lambda}_{B(\lambda)} \Big\}
\end{align}
$
**Binomial:** (assuming fixed $n$)
$
\begin{aligned}
f_p(y) &= \binom{n}{y} p^y (1-p)^{n-y} \\[8pt]
&=\binom{n}{y}\exp\Big\{y \ln(p)+(n-y) \ln(1-p) \Big\}\\[8pt]
&=\binom{n}{y}\exp\Big\{y \ln(p)+n\ln(1-p)-y\ln(1-p) \Big\}\\[8pt]
&=\binom{n}{y}\exp\Big\{y \ln(\frac{p}{1-p})+n\ln(1-p)\Big\}\\[8pt]
&=\underbrace{\binom{n}{y}}_{h(y)}\exp\Big\{\underbrace{y}_{T(y)}* \underbrace{\ln(\frac{p}{1-p})}_{\eta(p)}-\underbrace{(-n\ln(1-p))}_{B(p)}\Big\}\\[8pt]
\end{aligned}
$