## Adding Constants
The [[Variance]] stays unchanged if we add a constant $b$ to the [[Random Variable]] $X$. We are only changing the level, not the dispersion of the outcomes.
$ \mathrm{Var}(X+b) = \mathrm{Var}(X) $ ^7759b1
**Proof:**
- Let a new r.v. $Y$ be a transformed version of $X$. We can calculate its [[Expectation]].
$
\begin{align}
Y&=X+b \\
\mathbb E[Y] &= \mathbb E[X+b]\\
&= \mathbb E[X]+b \\
&= \mu +b
\end{align}
$
- Take the standard formula for the variance and express variables in terms $X$.
$
\begin{align}
\mathrm{Var}(Y) &= \mathbb E\big[(Y-\mathbb E[Y])^2 \big] \\
&=\mathbb E \big[(X+ b-(\mu+ b))^2 \big] \\
&=\mathbb E \big[(X+\mu)^2 \big]\\
&= \mathrm{Var}(X)
\end{align}
$
## Scaling by Factor
When scaling $X$ by a factor of $a$, the variance increases by $a^2$. Big values are affected stronger by the scaling, leading to higher dispersion.
$ \mathrm{Var}(aX) = a^2*\mathrm{Var}(X) $
**Proof:**
- Let a new r.v. $Y$ be a transformed version of $X$. We can calculate its expectation.
$ \begin{aligned} Y&=aX \\ \mathbb E[Y] &= a\mathbb E[X] = a\mu \end{aligned} $
- Take the standard formula for the variance and express variables in terms $X$.
$
\begin{align}
\mathrm{Var}(Y) &= \mathbb E\big[(Y-\mathbb E[Y])^2 \big] \\[2pt]
&= \mathbb E\big[(aX-a\mu)^2 \big] \\[2pt]
&= \mathbb E\big[(a(X-\mu))^2 \big] \\[2pt]
&= \mathbb E\big[a^2(X-\mu)^2 \big] \\[2pt]
&= a^2\mathbb E\big[(X-\mu)^2 \big] \\[2pt]
&= a^2 \mathrm{Var}(X)
\end{align} $