A set is a collection of distinct [[Events]]. - Finite set: $\{1,2,3\}$ - Infinite set: $\{x \in \mathbb R: x >5\}$ → All real numbers that are bigger than 5. **Sets of Numbers:** | Name | Notation | Description | | ---------------- | ----------- | -------------------------------------------------------- | | Natural numbers | $\mathbb N$ | All positive integers (excluding 0) | | Whole numbers | $\mathbb Z$ | All integers | | Rational numbers | $\mathbb Q$ | All integers, floats & fractions. | | Real numbers | $\mathbb R$ | All rational & irrational numbers $(\sqrt 2, \pi \dots)$ | **Set Operator Rules:** | Rule | Formula | | ---------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------- | | The complement of the complement is the regular event | $(S^C)^C=S$ | | A union with $\Omega$ results in $\Omega$ | $S \cup \Omega = \Omega$ | | The intersection of disjoint events is the empty set | $S \cap S^C = \emptyset$ | | Order and braces do NOT matter, if there is always the same operator (e.g. only $\cap$). | $S \cap T = T \cap Slt;br>$S \cup (T \cup V) = (S \cup T) \cup V$ | | Order and braces do matter, if there is mixed operators (e.g. $\cap$ mixed with $\cup$). | $S \cap (T \cup V) = (S \cap T) \cup (S \cap V)lt;br>$S \cup (T \cap V) = (S \cup T) \cap (S \cup V)$ | ## De Morgan's Law To perform De Morgan’s law, one needs to switch the operator $\cup \leftrightarrow \cap$ and put complements on each event separately. $ (S \cap T)^C=S^C \cup T^C \\ (S \cup T)^C=S^C \cap T^C $ **Derivation:** $ \begin{align} x \in (S \cap T)^C &= x \not \in (S \cap T) \\[4pt] &= (x \not \in S) \, \cup \, (x \not \in T) \\[4pt] &= (x \in S^C) \cup (x \in T^C) \\[4pt] &= x \in (S^C \cup T^C) \end{align} $ $ \begin{align} x \in (S \cup T)^C &= x \not \in (S \cup T) \\[4pt] &= (x \not \in S) \, \cap \, (x \not \in T) \\[4pt] &= (x \in S^C) \cap (x \in T^C) \\[4pt] &=x \in (S^C \cap T^C) \end{align} $ ![[de-morgans-law.png | alt="center" | 400]] **Generalization:** $ \begin{align} \Big(\bigcap_n S_n\Big)^C &= \bigcup_n S_n^C\\ \Big(\bigcup_n S_n\Big)^C &= \bigcap_n S_n^C\\ \end{align} $