Statistical measures such as the mean, [[Variance]], [[Covariance]], and [[Correlation]] can be estimated from sample data $X_1, \dots, X_n$​, to approximate the corresponding population parameters. **Mean:** $ \begin{align} \theta_X&=\mathbb{E}[X] && \text{(Population Mean)}\\[4pt] \hat \Theta_X&=\frac{1}{n} \sum_{i=1}^n X_i &&\text{(Sample Mean)} \end{align} $ For a general function $g(X)$, any population parameter can be estimated sample-based. $ \begin{align} \theta&=\mathbb{E}[g(X)] && \text{(Population Parameter)}\\[4pt] \hat \Theta&=\frac{1}{n} \sum_{i=1}^n g(X_i) &&\text{(Sample Estimator)} \end{align} $ This allows us to derive sample estimators for variance, covariance and correlation, by substituting specific forms of $g(X)$. **Variance:** $ \begin{align} v_X &= \mathbb{E}\big[(X-\theta_X)^2 \big] && \text{(Population Variance)}\\[4pt] \hat v_X&=\frac{1}{n} \sum_{i=1}^n(X_i- \hat \Theta_X)^2 && \text{(Sample Variance)} \end{align} $ **Covariance:** $ \begin{align} \mathrm{Cov}(X,Y) &= \mathbb{E}\big[(X-\theta_X)*(Y-\theta_Y)\big] && \text{(Population Covariance)}\\[4pt] \widehat{\mathrm{Cov}}(X,Y) &= \frac{1}{n} \sum_{i=1}^n [(X-\hat \Theta_X)*(Y-\hat \Theta_Y)\big] && \text{(Sample Covariance)} \end{align} $ **Correlation:** $ \begin{align} \rho &= \frac{\mathrm{Cov}(X,Y)}{\sqrt{v_X}*\sqrt{v_Y}} && \text{(Population Correlation)}\\[10pt] \hat \rho &= \frac{\widehat {\mathrm{Cov}}(X,Y)}{\sqrt{\hat v_X}*\sqrt{\hat v_Y}}&& \text{(Sample Correlation)} \end{align} $ By weak [[Law of Large Numbers]], all these sample-based estimators [[Modes of Convergence#Convergence in Probability|Convergence in Probability]] to the corresponding population parameter. Hence, they are [[Properties of an Estimator#Key Properties of an Estimator|consistent estimators]].