The [[Independence of Random Variables]] for a [[Gaussian Distribution]] establishes the following [[Joint Probability Density Function|Joint PDF]].
**Standard Gaussian:**
* $X \sim \mathcal N(0,1)$
* $Y \sim \mathcal N(0,1)$
* $X \perp Y$
$
\begin{align}
f_{X,Y}(x,y) &=f_X(x)*f_Y(y) \tag{1}\\[6pt]
&=\frac{1}{2 \pi}* \exp(-\frac{x^2}{2}) * \frac{1}{2 \pi}* \exp(-\frac{y^2}{2}) \tag{2}\\[8pt]
&=\frac{1}{2 \pi}* \exp\big (-\frac{1}{2}*(x^2+ y^2)\big) \tag{3}
\end{align}
$
(3) Products of separate exponentials can be written as a single exponential with summed exponents.
**General Gaussian:**
* $X \sim \mathcal N(\mu_x,\sigma_x^2)$
* $Y \sim \mathcal N(\mu_y,\sigma_y^2)$
* $X \perp Y$
$
\begin{align}
f_{X,Y}(x,y) =& f_X(x) * f_Y(y) \\
=&\Big(\frac{1}{\sigma_x \sqrt{2 \pi}}*\exp\big(-\frac{(x-\mu_x)^2}{2 \sigma_x^2}\big)\Big) * \\
&\Big(\frac{1}{\sigma_y \sqrt{2 \pi}}*\exp\big(-\frac{(y-\mu_y)^2}{2 \sigma_y^2}\big)\Big) \\
=&\frac{1}{2\sigma_x \sigma_y \pi} * \exp\Big(-\frac{(x-\mu_x)^2}{2\sigma_x^2} -\frac{(y-\mu_y)^2}{2\sigma_y^2} \Big)
\end{align}
$
The joint density has its maximum, where the exponent $=0$. This will be true, when $\{x,y\}$ are equal to $\{\mu_x, \mu_y\}$, which is also the expectation of the joint PDF.
![[independent-joint-gassuain.png|center|400]]