**PDF:**
![[continuous-uniform-distribution.png|center|400]]
**Expectation:** We derive the [[Expectation]] by integrating over the range of $[a,b]$.
$
\begin{align}
\mathbb E[X]
&= \int_{-\infty}^\infty x * f_X(x) * dx \tag{1}\\[6pt]
&= \int_{a}^b x * \frac{1}{b-a} * dx \tag{2}\\[6pt]
&= \Big(\frac{b^2}{2}*\frac{1}{b-a}\Big) - \Big(\frac{a^2}{2}*\frac{1}{b-a}\Big) \tag{3} \\[6pt]
&= \frac{b^2-a^2}{2(b-a)} \tag{4} \\[6pt]
&= \frac{(b-a)*(b+a)}{2 (b-a)} \tag{5}\\[6pt]
&= \frac{a+b}{2} \tag{6}
\end{align}
$
where:
- (2) We only need to evaluate between $[a,b]$. Also the density $f_X(x)=\frac{1}{b-a}$ in that range.
- (3) Evaluate the integral.
**Variance:** We will use the [[Variance#^559043|method of moments]] formula to derive variance. Firstly we calculate the second moment of $X$.
$ \begin{align}
\mathbb E[X^2] &= \int_{-\infty}^\infty x^2 * f_X(x) * dx \\[6pt]
&= \int_a^b x^2 * \frac{1}{b-a} * dx \\[6pt]
&= \frac{1}{b-a}*\Big(\frac{b^3}{3}-\frac{a^3}{3} \Big)
\end{align}
$
Then we plug this into the method of moments formula..
$
\begin{align}
\mathrm{Var}(X) & =\mathbb E[X^2]- (\mathbb E[X]^2) \\[4pt]
&=\frac{1}{b-a}*\Big(\frac{b^3}{3}-\frac{a^3}{3} \Big) - \Big(\frac{a+b}{2}\Big)^2 \\[10pt]
&=\frac{(b-a)^2}{12}
\end{align}
$
**Note:** This is slightly different from the variance for a [[Discrete Uniform Distribution#^e8b971|discrete uniform distribution]].