We want to find the number of different [[Number of Subsets|subsets]] of size $k$ where the [[Sample Space]] has size $n$ and the order does not matter. This is also called the “binomial coefficient”.
$ \binom{n}{k}=\frac{n!}{k!*(n-k)!} $
## Derivation
We will establish an equality in 2 ways to get the number of $k$-sized subsets where order matters.
1. *Number of subsets with permutation:* There is $\binom{n}{k}$ possible subsets, and each of them can be ordered in $k!$ ways.
$ \binom{n}{k}*k! $
2. *Directly via permutation:* We draw for each of the $k$ slots $k$-times, where the final draw has only $(n-k)$ options left.
$ n*(n-1)*\dots*(n-k) = \frac{n!}{(n-k)!} $
![[subsets-size-k.png|center|400]]
**Setting terms equal:** Now that we have two expressions for the number of ordered subsets of size $k$, we can set them equal:
$
\begin{align}
\binom{n}{k}*k! &=\frac{n!}{(n-k)!} \\[4pt]
\binom{n}{k} &=\frac{n!}{k!_(n-k)!}
\end{align}
$
## Validating Extreme Cases
$
\begin{align}
\text{where } k=0: \binom{n}{0}=\frac{n!}{0!(n-0)!}= \frac{n!}{n!}=1\\[6pt] \text{where } k=n:\binom{n}{n} =\frac{n!}{n!(n-n)!}=\frac{n!}{n!}=1\\[6pt]
\text{sum all }k: \sum_{k=0}^n \binom{n}{k}=2^n \impliedby\text{(all subsets)}
\end{align}
$
**Note:** We adopt the convention that $0! =1$