The Pegasos ("Primal Estimated Sub-Gradient Solver for SVM") algorithm is an efficient method for solving the optimization problem of a linear [[Support Vector Machine|SVM]]. It combines stochastic [[Gradient Descent]] with a decaying learning rate and a regularization term to find the optimal parameters $\theta$ and $\theta_0$.
**Parameters:**
- $\eta$: Decaying factor that will decrease over time.
- $\lambda$: Constant regularizing parameter, which decides how strong the previous $\theta$ is being weighted.
**Algorithm:**
```
if y_i * (theta * x_i) <= 1:
theta = (1 - eta * lambda) * theta * y_i * x_i
theta_0 += eta * y_i
else:
theta = (1 - eta * lambda) * theta*
```