**Identity transformation:** This transformation leaves the vector unchanged. The identity matrix has ones on the diagonal and zeros elsewhere.
$
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} *
\begin{bmatrix} x \\ y \end{bmatrix} =
\begin{bmatrix} x \\ y \end{bmatrix}
$
**Inversion transformation:** This flips the signs of both $x,y$. Note that this is different from the matrix inverse.
$
\begin{bmatrix} -1 & \phantom{..}0 \\ \phantom{..}0 & -1 \end{bmatrix} *
\begin{bmatrix} x \\ y \end{bmatrix} =
\begin{bmatrix} -x \\ -y \end{bmatrix}
$
![[matrix-inversion.png|center|250]]
**Stretch transformation:** A matrix with an off-diagonal element in the upper corner amplifies the stretch along the $x$-axis.
$
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} *
\begin{bmatrix} x \\ y \end{bmatrix} =
\begin{bmatrix} x+y \\ y \end{bmatrix}
$
![[matrix-strech.png|center|250]]
**Mirror transformation:** The original basis vectors switched their positions, which leads to the mirroring along a $45^\circ$ angle through the origin.
$ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix} $
![[matrix-mirror.png|center|300]]