Matrix diagonalization simplifies computations, particularly when dealing with repeated applications of a transformation matrix. It transforms the original matrix $T$ into a diagonal matrix $T_E$, enabling efficient computation of matrix powers. ## Problem Setup Consider a transformation matrix $T$ that describes the change in position of an object $v$ per unit time. Starting from the object's initial position $v_0$​, the position after $n$ steps is given by: $ v_n = T^n *v_0 $ This involves multiplying $T^n$, which requires multiplying $T$ by itself $n$ times. For large $n$, this becomes computationally expensive. Matrix diagonalization offers an efficient alternative. ## Diagonal Matrix A diagonal matrix has non-zero elements only on its main diagonal. $ D= \begin{bmatrix} a&0&0\\ 0&b&0\\ 0&0&c \end{bmatrix}$ When a diagonal matrix is multiplied by itself, only the diagonal elements are affected: $ D^2= \begin{bmatrix} a^2&0&0\\ 0&b^2&0\\ 0&0&c^2 \end{bmatrix}, \quad D^n= \begin{bmatrix} a^n&0&0\\ 0&b^n&0\\ 0&0&c^n \end{bmatrix} $ ## Changing to Eigenbasis Diagonalization relies on the eigenbasis of $T$, where the [[Eigenvectors]] of $T$ form the [[Changing Basis Vectors|new basis vectors]]. In this basis, the transformation $T$ is reduced to a diagonal matrix $T_E$​. We collect the new basis vectors, i.e. all eigenvectors of $T$ as column vectors in matrix $C$. $ C= \begin{bmatrix} \begin{pmatrix}\vdots \\ x_1 \\ \vdots \end{pmatrix} \begin{pmatrix}\vdots \\ x_2 \\ \vdots \end{pmatrix} \begin{pmatrix}\vdots \\ x_3 \\ \vdots \end{pmatrix} \end{bmatrix}$ By re-expressing $T$ in this new basis $T_E$ we obtain a diagonal matrix, where the diagonal elements are the corresponding eigenvalues. $ T_E= \begin{bmatrix} \lambda_1&0&0\\ 0&\lambda_2&0\\ 0&0&\lambda_3\\ \end{bmatrix} $ ## Transformation Chain The relationship between $T,C$ and $T_E$ is given by: $ T=C\cdot T_E \cdot C^{-1}$ where: - $C^{-1}$: maps vectors form the standard basis to the eigenbasis. - $T_E$: is the transformation $T$ expressed in eigenbasis. - $C$: maps the result back from eigenbasis to standard basis. The power $T^n$ is computed as: $ T^n=C \cdot T_E^n \cdot C^{-1}$ The full chain of transformations there looks as follows: ![[matrix-diagonalization.png|center|400]] $ \begin{align} T &= C\,T_E\,C^{-1} \\[4pt] T^2 &= C\,T_E\,C^{-1} * C\,T_E\,C^{-1} \\[4pt] T^2 &= C\,T_E\,T_E\,C^{-1} \\[4pt] T^2 &= C\,T_E^2\,C^{-1} \end{align} $